Uncertainty Estimation via Stochastic Batch Normalization

نویسندگان

  • Andrei Atanov
  • Arsenii Ashukha
  • Dmitry Molchanov
  • Kirill Neklyudov
  • Dmitry Vetrov
چکیده

In this work, we investigate Batch Normalization technique and propose its probabilistic interpretation. We propose a probabilistic model and show that Batch Normalization maximazes the lower bound of its marginalized log-likelihood. Then, according to the new probabilistic model, we design an algorithm which acts consistently during train and test. However, inference becomes computationally inefficient. To reduce memory and computational cost, we propose Stochastic Batch Normalization – an efficient approximation of proper inference procedure. This method provides us with a scalable uncertainty estimation technique. We demonstrate the performance of Stochastic Batch Normalization on popular architectures (including deep convolutional architectures: VGG-like and ResNets) for MNIST and CIFAR-10 datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confidence Interval Estimation of the Mean of Stationary Stochastic Processes: a Comparison of Batch Means and Weighted Batch Means Approach (TECHNICAL NOTE)

Suppose that we have one run of n observations of a stochastic process by means of computer simulation and would like to construct a condifence interval for the steady-state mean of the process. Seeking for independent observations, so that the classical statistical methods could be applied, we can divide the n observations into k batches of length m (n= k.m) or alternatively, transform the cor...

متن کامل

Uncertainty in fundamental natural frequency estimation for alluvial deposits

Seismic waves are filtered as they pass through soil layers, from bedrock to surface. Frequencies and amplitudes of the response wave are affected due to this filtration effect and this will result in different ground motion characteristics. Therefore, it is important to consider the impact of the soil properties on the evaluation of earthquake ground motions for the design of structures. Soil ...

متن کامل

Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis

Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...

متن کامل

Active Bias: Training a More Accurate Neural Network by Emphasizing High Variance Samples

Self-paced learning and hard example mining re-weight training instances to improve learning accuracy. This paper presents two improved alternatives based on lightweight estimates of sample uncertainty in stochastic gradient descent (SGD): the variance in predicted probability of the correct class across iterations of minibatch SGD, and the proximity of the correct class probability to the deci...

متن کامل

WNGrad: Learn the Learning Rate in Gradient Descent

Adjusting the learning rate schedule in stochastic gradient methods is an important unresolved problem which requires tuning in practice. If certain parameters of the loss function such as smoothness or strong convexity constants are known, theoretical learning rate schedules can be applied. However, in practice, such parameters are not known, and the loss function of interest is not convex in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.04893  شماره 

صفحات  -

تاریخ انتشار 2018